Part Number Hot Search : 
4B06A CMM5104 LT1P11A HER306 RC1117 H11AA3 DZ2J220 C908A
Product Description
Full Text Search
 

To Download SGW20N60 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  sgp20n60, sgb20n60 SGW20N60 1jul-02 fast igbt in npt-technology ? 75% lower e off compared to previous generation combined with low conduction losses ? short circuit withstand time ? 10 s ? designed for: - motor controls - inverter ? npt-technology for 600v applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability ? complete product spectrum and pspice models : http://www.infineon.com/igbt/ type v ce i c v ce(sat ) t j package ordering code sgp20n60 sgb20n60 SGW20N60 600v 20a 2.4v 150 c to-220ab to-263ab to-247ac q67040-s4509 q67041-a4712 q67040-s4236 maximum ratings parameter symbol value unit collector-emitter voltage v ce 600 v dc collector current t c = 25 c t c = 100 c i c 40 20 pulsed collector current, t p limited by t jmax i cpuls 80 turn off safe operating area v ce 600v, t j 150 c - 80 a gate-emitter voltage v ge 20 v avalanche energy, single pulse i c = 20 a, v cc = 50 v, r ge = 25 ? , start at t j = 25 c e as 115 mj short circuit withstand time 1) v ge = 15v, v cc 600v, t j 150 c t sc 10 s power dissipation t c = 25 c p tot 179 w operating junction and storage temperature t j , t stg -55...+150 c 1) allowed number of short circuits: <1000; time between short circuits: >1s. g c e p-to-220-3-1 (to-220ab) p-to-247-3-1 (to-247ac) p-to-263-3-2 (d2-pak) (to-263ab)
sgp20n60, sgb20n60 SGW20N60 2jul-02 thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r thjc 0.7 thermal resistance, junction ? ambient r thja to-220ab to-247ac 62 40 k/w smd version, device on pcb 1) r thja to-263ab 40 electrical characteristic, at t j = 25 c, unless otherwise specified value parameter symbol conditions min. typ. max. unit static characteristic collector-emitter breakdown voltage v (br)ces v ge =0v, i c =500 a 600 - - collector-emitter saturation voltage v ce(sat) v ge = 15v, i c =20a t j =25 c t j =150 c 1.7 - 2 2.4 2.4 2.9 gate-emitter threshold voltage v ge(th) i c =700 a, v ce = v ge 345 v zero gate voltage collector current i ces v ce =600v, v ge =0v t j =25 c t j =150 c - - - - 40 2500 a gate-emitter leakage current i ges v ce =0v, v ge =20v - - 100 na transconductance g fs v ce =20v, i c =20a -14-s dynamic characteristic input capacitance c iss - 1100 1320 output capacitance c oss - 107 128 reverse transfer capacitance c rss v ce =25v, v ge =0v, f =1mhz -6376 pf gate charge q gate v cc =480v, i c =20a v ge =15v - 100 130 nc internal emitter inductance measured 5mm (0.197 in.) from case l e to-220ab to-247ac - - 7 13 -nh short circuit collector current 2) i c(sc) v ge =15v, t sc 10 s v cc 600v, t j 150 c - 200 - a 1) device on 50mm*50mm*1.5mm epoxy pcb fr4 with 6cm 2 (one layer, 70 m thick) copper area for collector connection. pcb is vertical without blown air. 2) allowed number of short circuits: <1000; time between short circuits: >1s.
sgp20n60, sgb20n60 SGW20N60 3jul-02 switching characteristic, inductive load, at t j =25 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -3646 rise time t r -3036 turn-off delay time t d(off) - 225 270 fall time t f -5465 ns turn-on energy e on - 0.44 0.53 turn-off energy e off - 0.33 0.43 total switching energy e ts t j =25 c, v cc =400v, i c =20a, v ge =0/15v, r g =16 ? , l 1) =180nh, c 1) =900pf energy losses include ?tail? and diode reverse recovery. - 0.77 0.96 mj switching characteristic, inductive load, at t j =150 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -3646 rise time t r -3036 turn-off delay time t d(off) - 250 300 fall time t f -6376 ns turn-on energy e on - 0.67 0.81 turn-off energy e off - 0.49 0.64 total switching energy e ts t j =150 c v cc =400v, i c =20a, v ge =0/15v, r g =16 ? , l 1) =180nh, c 1) =900pf energy losses include ?tail? and diode reverse recovery. - 1.12 1.45 mj 1) leakage inductance l and stray capacity c due to dynamic test circuit in figure e.
sgp20n60, sgb20n60 SGW20N60 4jul-02 i c , collector current 10hz 100hz 1khz 10khz 100khz 0a 10a 20a 30a 40a 50a 60a 70a 80a 90a 100a 110a t c =110c t c =80c i c , collector current 1v 10v 100v 1000v 0.1a 1a 10a 100a dc 1ms 200 s 50 s 15 s t p =4 s f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j 150 c, d = 0.5, v ce = 400v, v ge = 0/+15v, r g = 16 ? ) figure 2. safe operating area ( d = 0, t c = 25 c, t j 150 c) p tot , power dissipation 25c 50c 75c 100c 125c 0w 20w 40w 60w 80w 100w 120w 140w 160w 180w 200w i c , collector current 25c 50c 75c 100c 125c 0a 10a 20a 30a 40a 50a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j 150 c) figure 4. collector current as a function of case temperature ( v ge 15v, t j 150 c) i c i c
sgp20n60, sgb20n60 SGW20N60 5jul-02 i c , collector current 0v 1v 2v 3v 4v 5v 0a 10a 20a 30a 40a 50a 60a 15v 13v 11v 9v 7v 5v v ge =20v i c , collector current 0v 1v 2v 3v 4v 5v 0a 10a 20a 30a 40a 50a 60a 15v 13v 11v 9v 7v 5v v ge =20v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristics ( t j = 25 c) figure 6. typical output characteristics ( t j = 150 c) i c , collector current 0v 2v 4v 6v 8v 10v 0a 10a 20a 30a 40a 50a 60a 70a -55c +150c t j =+25c v ce(sat) , collector - emitter saturation voltage -50c 0c 50c 100c 150c 1.0v 1.5v 2.0v 2.5v 3.0v 3.5v 4.0v v ge , gate - emitter voltage t j , junction temperature figure 7. typical transfer characteristics ( v ce = 10v) figure 8. typical collector-emitter saturation voltage as a function of junction temperature ( v ge = 15v) i c = 20a i c = 40a
sgp20n60, sgb20n60 SGW20N60 6jul-02 t , switching times 10a 20a 30a 40a 10ns 100ns t r t d(on) t f t d(off) t , switching times 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 10ns 100ns t r t d(on) t f t d(off) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, r g = 1 6 ? , dynamic test circuit in figure e) figure 10. typical switching times as a function of gate resistor (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, i c = 20a, dynamic test circuit in figure e) t , switching times 0c 50c 100c 150c 10ns 100ns t r t d(on) t f t d(off) v ge(th) , gate - emitter threshold voltage -50c 0c 50c 100c 150c 2.0v 2.5v 3.0v 3.5v 4.0v 4.5v 5.0v 5.5v typ. min. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce = 400v, v ge = 0/+15v, i c = 20a, r g = 1 6 ? , dynamic test circuit in figure e) figure 12. gate-emitter threshold voltage as a function of junction temperature ( i c = 0.7ma)
sgp20n60, sgb20n60 SGW20N60 7jul-02 e , switching energy losses 0a 10a 20a 30a 40a 50a 0.0mj 0.5mj 1.0mj 1.5mj 2.0mj 2.5mj 3.0mj e on * e off e ts * e , switching energy losses 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 0.0mj 0.5mj 1.0mj 1.5mj 2.0mj 2.5mj 3.0mj e ts * e on * e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, r g = 1 6 ? , dynamic test circuit in figure e) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j = 150 c, v ce = 400v, v ge = 0/+15v, i c = 20a, dynamic test circuit in figure e) e , switching energy losses 0c 50c 100c 150c 0.0mj 0.2mj 0.4mj 0.6mj 0.8mj 1.0mj 1.2mj 1.4mj 1.6mj e ts * e on * e off z thjc , transient thermal impedance 1s 10s 100s 1ms 10ms 100ms 1s 10 -4 k/w 10 -3 k/w 10 -2 k/w 10 -1 k/w 10 0 k/w 0.01 0.02 0.05 0.1 0.2 single pulse d =0.5 t j , junction temperature t p , pulse width figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce = 400v, v ge = 0/+15v, i c = 20a, r g = 1 6 ? , dynamic test circuit in figure e) figure 16. igbt transient thermal impedance as a function of pulse width ( d = t p / t ) *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. c 1 = 1 / r 1 r 1 r 2 c 2 = 2 / r 2 r ,(1/w) , (s) = 0.1882 0.1137 0.3214 2.24*10 -2 0.1512 7.86*10 -4 0.0392 9.41*10 -5
sgp20n60, sgb20n60 SGW20N60 8jul-02 v ge , gate - emitter voltage 0nc 25nc 50nc 75nc 100nc 125nc 0v 5v 10v 15v 20v 25v 480v 120v c , capacitance 0v 10v 20v 30v 10pf 100pf 1nf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c = 20a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge = 0v, f = 1mhz) t sc , short circuit withstand time 10v 11v 12v 13v 14v 15v 0 s 5 s 10 s 15 s 20 s 25 i c(sc) , short circuit collector current 10v 12v 14v 16v 18v 20v 0a 50a 100a 150a 200a 250a 300a 350a v ge , gate - emitter voltage v ge , gate - emitter voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce = 600v, start at t j = 25 c) figure 20. typical short circuit collector current as a function of gate-emitter voltage ( v ce 600v, t j = 150 c)
sgp20n60, sgb20n60 SGW20N60 9jul-02 dimensions symbol [mm] [inch] min max min max a 9.70 10.30 0.3819 0.4055 b 14.88 15.95 0.5858 0.6280 c 0.65 0.86 0.0256 0.0339 d 3.55 3.89 0.1398 0.1531 e 2.60 3.00 0.1024 0.1181 f 6.00 6.80 0.2362 0.2677 g 13.00 14.00 0.5118 0.5512 h 4.35 4.75 0.1713 0.1870 k 0.38 0.65 0.0150 0.0256 l 0.95 1.32 0.0374 0.0520 m 2.54 typ. 0.1 typ. n 4.30 4.50 0.1693 0.1772 p 1.17 1.40 0.0461 0.0551 t 2.30 2.72 0.0906 0.1071 to-220ab dimensions symbol [mm] [inch] min max min max a 9.80 10.20 0.3858 0.4016 b 0.70 1.30 0.0276 0.0512 c 1.00 1.60 0.0394 0.0630 d 1.03 1.07 0.0406 0.0421 e 2.54 typ. 0.1 typ. f 0.65 0.85 0.0256 0.0335 g 5.08 typ. 0.2 typ. h 4.30 4.50 0.1693 0.1772 k 1.17 1.37 0.0461 0.0539 l 9.05 9.45 0.3563 0.3720 m 2.30 2.50 0.0906 0.0984 n 15 typ. 0.5906 typ. p 0.00 0.20 0.0000 0.0079 q 4.20 5.20 0.1654 0.2047 r 8 max 8 max s 2.40 3.00 0.0945 0.1181 t 0.40 0.60 0.0157 0.0236 u 10.80 0.4252 v 1.15 0.0453 w 6.23 0.2453 x 4.60 0.1811 y 9.40 0.3701 to-263ab (d 2 pak) z 16.15 0.6358
sgp20n60, sgb20n60 SGW20N60 10 jul-02 dimensions symbol [mm] [inch] min max min max a 4.78 5.28 0.1882 0.2079 b 2.29 2.51 0.0902 0.0988 c 1.78 2.29 0.0701 0.0902 d 1.09 1.32 0.0429 0.0520 e 1.73 2.06 0.0681 0.0811 f 2.67 3.18 0.1051 0.1252 g 0.76 max 0.0299 max h 20.80 21.16 0.8189 0.8331 k 15.65 16.15 0.6161 0.6358 l 5.21 5.72 0.2051 0.2252 m 19.81 20.68 0.7799 0.8142 n 3.560 4.930 0.1402 0.1941 ? p 3.61 0.1421 q 6.12 6.22 0.2409 0.2449 to-247ac
sgp20n60, sgb20n60 SGW20N60 11 jul-02 figure a. definition of switching times figure b. definition of switching losses p(t) 12 n t(t) j figure d. thermal equivalent circuit figure e. dynamic test circuit leakage inductance l =180nh a n d stray capacity c =900pf.
sgp20n60, sgb20n60 SGW20N60 12 jul-02 published by infineon technologies ag , bereich kommunikation st.-martin-strasse 53, d-81541 mnchen ? infineon technologies ag 2000 all rights reserved. attention please! the information herein is given to describe certain components and shall not be considered as warranted characteristics. terms of delivery and rights to technical change reserved. we hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. infineon technologies is an approved cecc manufacturer. information for further information on technology, delivery terms and conditions and prices please contact your nearest infineon technologies office in germany or our infineon technologies representatives worldwide (see address list). warnings due to technical requirements components may contain dangerous substances. for information on the types in question please contact your nearest infineon technologies office. infineon technologies components may only be used in life-support devices or systems with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of SGW20N60

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X